
IJSRSET173842 | Received : 01 Nov 2017 | Accepted : 14 Nov 2017 | November-December-2017 [(3)8: 129-135]

© 2017 IJSRSET | Volume 3 | Issue 8 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

129

A Scalable Approach for Encrypted Query Routing on

Encrypted Databases
Arun Kumar Silivery

1
, Suvarna S

2

Department of CSE, Raja mahendra College of Engineering,Ibrahimpatnam,Hyderabad, Andhra Pradesh, India
1

Assistent Professor, Department of CSE,Raja mahendra College of Engineering,Ibrahimpatnam,Hyderabad, Andhra

Pradesh, India
2

ABSTRACT

Online applications are powerless against robbery of sensitive data since adversaries can abuse programming bugs

to access private information, and in light of the fact that curious or malware administrators may catch and break

information. CryptDB is a framework that gives practical or provable confidentiality even with these attacks for

applications backed by SQL databases. It works by executing SQL queries over encoded information utilizing an

accumulation of effective SQL-aware encryption models. CryptDB can likewise link encryption keys to client

passwords, with the goal that an information item can be decoded just by utilizing the secret key of one of the clients

with access to that information. Accordingly, a database administrator never accesses decrypted information, and

regardless of the possibility that all servers are compromised, an enemy can't decrypt the information of any client

who isn't signed in. An investigation of a trace of 126 million SQL queries from a generation MySQL server appears

that CryptDB can support operations over encoded information for 99.5% of the 128,840 columns found in the trace.

Our assessment appears that CryptDB has low overhead, decreasing throughput by 14.5% for phpBB, a web forum

application, and by 26% for queries from TPCC, contrasted with unmodified MySQL. Fastening encryption keys to

client passwords requires 11– 13 special pattern annotations to secure more than 20 sensitive fields and 2– 7 lines

of source code changes for three multi-client web applications.

Keywords : DBMS server, CryptDB proxy server, SQL-aware Encryption and Adjustable Query-based Encryption

I. INTRODUCTION

We present CryptDB, a practical framework that

investigates a middle of configuration point to give

confidentiality for applications that utilize database

administration frameworks (DBMSes). CryptDB is the

primary framework that can execute an extensive

variety of SQL queries over encrypted information. The

key understanding that makes our approach functional is

that most SQL queries utilize a little arrangement of all

around characterized administrators, each of which we

can support proficiently over encoded information.

CryptDB tends to two dangers, as showed in Figure 1.

The primary risk is an adversary who accesses the

DBMS server and tries to learn private information by

snooping on the server. This danger may emerge when

an attacker abuses some vulnerability to specifically get

to the DB server, when the database is outsourced to an

outside organization (e.g., an open "cloud"), or when the

DBMS is directed by an curious framework or database

administrator (DBA) who won't not be trusted. CryptDB

intends to prevent the enemy from learning private

information for this situation. The second danger is a

adversary who gets complete control of the application

and the DBMS servers. For this situation, CryptDB

ensures the confidentiality of the information having a

place just to clients logged-out of the application during

an attack, however can't give any certifications to

signed in clients. This paper concentrates principally on

the answer for begin risk; our SOSP paper points of

interest the extra mechanisms that address the second

risk. CryptDB requires no progressions to the internals

of the DBMS server, and should work with most

standard SQL DBMSes. Our execution utilizes a

MySQL back-end. Our practicals demonstrate that the

overhead of CryptDB is modest: throughput decreases

by 26% for queries from the standard TPC-C

benchmark, and by 14.5% for a multiuser bulletin board

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 130

application (phpBB), 18 looked at to running them over

MySQL without encryption. We find that CryptDB

accepts most queries watched by in practice: an

examination of 126 million SQL queries from a MIT

MySQL service demonstrated that CryptDB accepts

operations over encrypted information for 99.5% of the

128,840 sections found in the query trace.

II. CryptDB’s THREAT MODEL

We discuss CryptDB’s threat model and provide an

overview of our approach.

Threat at DBMS Server

In this danger, CryptDB makes preparations for a

curious DBA or other outside attacker with full access

to the information put away in the DBMS server. Our

objective is confidentiality (information security), not

trustworthiness or accessibility. The attacker is thought

to be passive: she needs to learn confidential

information, yet does not change queries issued by the

application, query comes about, or the information in

the DBMS.

Figure: Passive Attacks on DBMS Server

This risk incorporates DBMS programming

compromises, root access to DBMS machines, and even

access to the RAM of physical machines. With the

ascent in database solidification inside big business data

centers, outsourcing of databases to open distributed

cloud computing frameworks, and the utilization of

outsider DBAs, this risk is progressively essential.

Threat at Arbitrary level

We now depict the second risk where the application

server, intermediary proxy, and DBMS server

frameworks might be compromised arbitrarily. The

approach in danger 1 is deficient in light of the fact that

a adversary would now be able to access the keys used

to encode the whole database. The arrangement is to

encrypt distinctive information items (e.g., information

having a place to various clients) with various keys. To

analyze the key that should be utilized for every data

item, developers annotate the application’s database

construction to express better grained privacy policies.

A curious DBA still can't acquire private information by

snooping on the DBMS server (danger 1), and likewise,

a adversary who compromises the application server or

the intermediary proxy would now be able to decode

only information of right now signed in clients (which

are put away in the intermediary proxy). Information of

right now inactive clients would be encoded with keys

not available to the adversary, and would stay

confidential. In this setup, CryptDB gives solid

assurances in the substance of arbitrary server-side

compromises, including those that pick up root access to

the application or the intermediary proxy. CryptDB

reveals at most the information of as of now dynamic

clients for the length of the compromise, regardless of

the possibility that the intermediary proxy acts in a

Byzantine form. By “length of a compromise ", we

mean the interval from the begin of the compromise

until the point when any trace of the compromised has

been removed from the framework. For a read SQL

infusion attack, the length of the compromised traverses

the attacker's SQL queries. In the above illustration of a

adversary changing the email address of a client in the

database, we consider the framework compromised for

whatever length of time that the attacker’s email address

endures in the database.

III. CryptDB OVERVIEW

CryptDB gives privacy in the face of an attacker with

full read access to the information put away in the

DBMS server. CryptDB tends to these difficulties

utilizing three key ideas: a) the first is to execute SQL

queries over encrypted information. CryptDB

implements this thought utilizing a SQL-aware

encryption procedure, which use the way that all SQL

queries are comprised of an all around characterized set

of primitive administrators, for example, balance checks,

arrange correlations, aggregates (entireties), and joins.

By adopting known encryption plans (for balance,

increases, and request checks) and utilizing another

security cryptographic technique for joins, CryptDB

encodes every data item in a way that enables the

DBMS to execute on the carried information. CryptDB

is proficient in light of the fact that it for the most part

utilizes symmetric-key encryption, maintains a strategic

distance from completely homomorphism encryption,

and keeps running on unmodified DBMS programming

(by utilizing client characterized functions). b) The

second strategy is adjustable query-based encryption.

Some encryption plans release more data than others

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 131

about the information to the DBMS server, however are

required to process certain queries.

Figure 1: CryptDB’s Architecture

To avoid from uncovering every possible encryption of

information to the DBMS from the earlier, CryptDB

carefully changes the SQL aware encryption technique

for any given information item, depending on the

queries saw at run-time. To actualize these adjustments

proficiently, CryptDB utilizes onions of encryption.

Onions are a novel approach to minimally store

different cipher texts inside each other in the database

and maintain a strategic distance from costly re-

encryptions. c) The third thought is to chain encryption

keys to user passwords, so that every data thing in the

database can be decrypted just through a chain of keys

established in the keyword of one of the clients with

access to that information. Accordingly, if the client

isn't signed into the application, and if the adversary

does not know the client’s secret key, the enemy can't

decrypt the client's information, regardless of the

possibility that the DBMS and the application server are

completely compromised. To develop a chain of keys

that catches the application's information security and

sharing approach, CryptDB enables the developer to

give policy annotations over the application's SQL

schema, determining which clients (or different

principals, for example, groups) have access to every

data item.

IV. SQL QUERIES OVER ENCRYPTED DATA

CryptDB enables the DBMS server to execute SQL

queries on encrypted data almost as if it were executing

the same queries on plaintext data. Existing applications

do not need to be changed. The CryptDB proxy stores a

private master key MK, the database technique, and the

present encryption layer of each column. The DBMS

server sees an anonymized model (in which table and

column names are exchanged by misty identifiers),

encoded client information, and some assistant tables

utilized by CryptDB. CryptDB likewise outfits the

server with certain user defined functions (UDFs) that

empower the server to figure on cipher texts for specific

operations. Preparing a query in CryptDB includes four

steps: 1. the application issues an query, which the

intermediary proxy captures and rewrites: it anonymizes

each table furthermore, column name, and, utilizing the

master MK, encrypts every consistent in the query with

an encryption technique most appropriate for the desired

operation. 2. The intermediate proxy additionally

replaces certain operations with UDFs. 3. The

intermediary proxy checks if the DBMS server should

be given keys to change encryption layers before

executing the query, and provided that this is true,

issues an UPDATE query at the DBMS server, which

conjures a UDF to modify the encryption layer of the

suitable columns (Section 3.2). 4. The intermediary

proxy sends the encoded query to the server, which

executes it. 5. The server restores the encoded query

result, which the intermediary proxy decrypts and

comes back to the application.

A. SQL aware Encryption: We now depict the

encryption techniques utilized as a part of CryptDB,

counting various existing cryptosystems and another

cryptographic primitive for joins. For every encryption

technique, we clarify the security property that CryptDB

requires from it, its functionality, and how it is executed.

Irregular (RND). RND gives the most extreme security

in CryptDB: indistinctness under a adaptive chosen

plaintext attack (IND-CPA); the plan is probabilistic,

implying that two rise to values are mapped to various

cipher texts with overpowering probability. Then again,

RND does not permit any calculation to be performed

efficiently on the cipher text. An effective development

of RND is to utilize a square figure like AES or

Blowfish in CBC mode together with an arbitrary

instatement vector.

Homomorphic encryption (HOM): HOM is as secure a

probabilistic encryption technique as RND, however

permits the server to perform calculations on encrypted

information with the last result decrypted at the

intermediary proxy. Although completely

homomorphism encryption is restrictively moderate,

homomorphic encryption for particular operations is

efficient. To help increments, we executed the Paillier

cryptosystem. With Paillier, duplicating the encryptions

of two values brings about an encryption of the

aggregate of the values, that is, HOMK (x) · HOMK (y)

= HOMK (x + y), where the multiplication is performed

modulo some public key value. To register SUM totals,

the intermediary proxy replaces SUM with calls to a

UDF that performs Paillier increase on a column

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 132

encrypted with HOM. HOM can likewise be used to

compute midpoints by having the DBMS server return

the total and the tally independently, and to increase

values (e.g., SET id = id + 1). HOM cipher texts are

2048 bits in length.

JOIN and OPE-JOIN (join): A different encryption

technique is expected to permit balance join between

two columns, on the grounds that we utilize distinctive

column particular keys for DET to avoid connections

between's columns. JOIN not just supports all the

operations permitted by DET, yet in addition empower

the server to decide repeating values between two

unique columns. OPE-JOIN empowers joins by arrange

relations. We give another cryptographic plan for JOIN.

Word Search (SEARCH): SEARCH is utilized to

perform searches on encrypted content to help

operations, for example, MySQL’s LIKE administrator.

Search is about as secure as RND. We executed the

technique for Song et al. SEARCH as of now supports

just full word search. At the point when the client plays

out a search, for example, SELECT * FROM messages

WHERE msg LIKE "% alice %", the intermediary

proxy gives the DBMS server a token, which is an

encryption of alice. The server can't decrypt the token to

make sense of the hidden word. Utilizing a client

characterized work, the DBMS server checks if any of

the word encryptions in any message coordinate the

token. All that the server gains from a SEARCH query

is regardless of whether the token coordinated a

message or not, and just for the tokens asked for by the

client. The server would take in the same data while

restoring the result set to the clients, so the plan reveals

the negligible measure of extra data expected to restore

the outcome.

B. Adjustable Query-based Encryption

CryptDB's adjustable query-based encryption technique

takes care of this issue by progressively adjusting the

layer of encryption on the DBMS server. The thought is

to encrypt each information item in at least one onion:

that is, each value is dressed in layers of progressively

stronger encryption, as appeared in Figures 2 and 3.

Each layer of every onion empowers a certain class of

computation, as clarified prior. Different onions are

required on the grounds that the calculations supported

by various encryption plans are not generally strictly

requested. Contingent upon the sort of the information,

CryptDB may not keep up all onions for every column.

For example, the Search onion does not make well for

numbers, and they Include onion does not make sense

well for strings.

Figure 2: Onion encryption layers and the classes of

computation they allow. Onion names stand for the

operations they allow at some of their layers

For each layer of every onion, the intermediary proxy

utilizes the same key for encoding values in a similar

column, and unique keys crosswise over tables, columns,

onions, and onion layers. Utilizing a similar key for all

values in a column permits the intermediary proxy to

perform operations on a column without having to

process separate keys for each column that will be

controlled. Utilizing individual keys crosswise over

columns keeps the server from adapting any extra

relations. These keys are derived from the private

master key MK. For instance, for table t, column c,

onion o, and encryption layer l, the intermediary proxy

utilizes the key

 = (table t, column c, onion o, layer l)

Where PRP is a pseudorandom permutation (e.g., AES).

Every onion begins with the most secure encryption

technique as the best level (RND for onions Eq and Ord,

HOM for onion Add, and SEARCH for onion Search).

As the intermediary proxy gets SQL queries from the

application, it decides regardless of whether layers of

encryption should be evacuated. On the off chance that

query requires predicate P on column c, the

intermediary proxy initially sets up what onion layers

are expected to figure P on c. On the off chance that the

encryption of c isn't now at an onion layer that permits P,

the intermediary proxy strips off the onion layers to

permit P on c, by sending the related onion key to the

server. The intermediary proxy never decodes the

information past the minimum secure non-plaintext

encryption onion layer, which might be superseded by

the blueprint designer to be a more secure layer (e.g.,

one may determine that charge card data may even

under the least favorable conditions be at DET, also,

never at OPE). CryptDB analyzes onion layer

decryption utilizing UDFs that keep running on the

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 133

DBMS server. For instance, in Figure 3, to decrypt

onion Ord of column 2 in Table 1 to layer OPE, the

intermediary issues the accompanying query to the

server, invoking the

DECRYPT_RND UDF: UPDATE Table1 SET C2-Ord

= DECRYPT_RND (K, C2-Ord, C2-IV,)

Where K is the proper key computed from Equation (1).

In the meantime, the intermediary proxy updates its own

inward state to keep in mind that column C2-Ord in

Table1 is currently at layer OPE in the DBMS.

Figure 3. Examples of (a) how CryptDB transforms a

table’s schema and encrypts a database

V. EXPERIMENTAL EVALUATION

We examine the functionality and security of CryptDB

on five applications and one huge trace: phpBB (Web

forum application), HotCRP (a meeting framework),

grad apply (the MIT EECS graduate confirmation

application), Open-EMR (an electronic healthcare

records application putting away patient medical

information), TPC-C (an industry-standard database

benchmark), and a follow of SQL queries from a well

known MySQL server at MIT, sql. Mit.edu. This server

is utilized fundamentally by Web applications running

on scripts.mit.edu, a common Web application

facilitating operated by MIT's Student Information

Handling Board (SIPB). What's more, this SQL server

is utilized by various applications that keep running on

different machines what’s more, utilize sql.mit.edu just

to store their information. Our query trace traverses

around ten days, and incorporates roughly 126 million

queries more than 1193 databases and 18,162 queries.

Each database is probably going to be a different

occasion of an application. Every one of these

applications and the huge SQL trace contain delicate

data that should be secured.

Functional evaluation: We find that CryptDB accepts

most queries; the number of columns in the

"requirements plaintext" column, which checks columns

that can't be prepared in encrypted form by CryptDB, is

little in respect to the quantity of columns encrypted.

For OpenEMR, CryptDB does not accept queries on

certain sensitive fields that perform string control (e.g.,

substring and lowercase transformations) or date control

(e.g., acquiring the day, month, or year of an encoded

date). Notwithstanding, if these capacities were

precomputed with the outcomes included as

independent columns (e.g., by encoding the three

columns of a date independently), CryptDB would

support these queries.

Security evaluation: To determine the measure of data

that would be uncovered to the adversary practically

speaking, we look at the steady state onion levels of

various columns. To evaluate the level of security, we

characterize the MinEnc of a column to be the weakest

onion encryption technique uncovered on any of the

onions of a column when onions achieve a steady state

(i.e., after the application creates all query types, many

running the entire trace). We consider RND and HOM

as the strongest plans, trailed via SEARCH, trailed by

DET and JOIN, and completing with OPE, which is the

weakest technique. For instance, if a column has onion

Eq at RND, onion Ord at OPE, and onion Add at HOM,

the MinEnc of this column is OPE. The correct side of

Figure 4 demonstrates the MinEnc onion level for our

applications and query traces.

Figure 4: Steady-state onion levels for database

columns required by a range of applications and traces.

VI. PERFORMANCE EVALUATION

To assess the performance of CryptDB, we utilized a

machine with two 2.4GHz Intel Xeon E5620 4-center

processors and 12GB of RAM to run the MySQL 5.1.54

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 134

server, and a machine with eight 2.4GHz AMD Opteron

8431 6-center processors furthermore, 64GB of RAM to

run the CryptDB intermediary proxy and the customers.

The two machines were associated over a mutual

Gigabit Ethernet network. The higher-provisioned

customer machine guarantees that the customers are not

the bottleneck in any experimental trails. All workloads

fit in the server's RAM. We look at the performance of a

TPC-C query blend when running on an unmodified

MySQL server versus on a CryptDB intermediary proxy

in front of the MySQL server. We prepared CryptDB on

the query set so there are no onion alterations during the

TPC-C tests.

Figure 5: Throughput for TPC-C queries, for a varying

number of cores on the underlying MySQL DBMS

server.

Figure 6: Throughput of different types of SQL queries

from the TPCC query mix running under MySQL,

CryptDB, and the strawman design.

Figure 5 demonstrates the throughput of TPC-C queries

as the quantity of centers on the server shifts from one

to eight. In all cases, the server invests 100% of its CPU

energy preparing queries. Both MySQL and CryptDB

scale well at first, however begin to level off because of

inside secure conflict in the MySQL server, as

announced by SHOW STATUS LIKE 'Table%'. The

general throughput with CryptDB is 21– 26% lower

than MySQL, contingent upon the correct number of

centers. To comprehend the wellsprings of CryptDB's

overhead, we measure the server throughput for various

types of SQL queries seen in TPC-C, on a similar server,

however running with just a single center empowered.

Figure 6 demonstrates the outcomes for MySQL,

CryptDB, and a strawman outline; the strawman plays

out each query over information encrypted with RND

by decrypting the significant information utilizing a

UDF, playing out the query over the plaintext, and re-

encoding the outcome (if refreshing rows).

VII. CONCLUSION

We exhibited CryptDB, a framework that gives a

practical and solid level of confidentiality even with two

significant dangers going up against database-supported

applications: curious DBAs and arbitrary compromises

of the application server and the DBMS. CryptDB

meets its objectives utilizing three thoughts: running

queries effectively finished encrypted information

utilizing a novel SQL-mindful encryption system,

powerfully modifying the encryption level utilizing

onions of encryption to limit the data revealed to the

untrusted DBMS server, also, chaining encryption keys

to client passwords in a way that permits just approved

clients to access scrambled information.

VIII. REFERENCES

[1]. F. Bao, R. H. Deng, X. Ding, and Y. Yang. Private

query on encrypted data in multi-user settings. In

Proceedings of the 4th International Conference on

Information Security Practice and Experience,

Sydney, Australia, April 2008.

[2]. A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill.

Orderpreserving symmetric encryption. In

Proceedings of the 28th Annual International

Conference on the Theory and Applications of

Cryptographic Techniques (EUROCRYPT),

Cologne, Germany, April 2009.

[3]. D. Boneh and B. Waters. Conjunctive, subset, and

range queries on encrypted data. In Proceedings of

the 4th Conference on Theory of Cryptography,

2007.

[4]. A. Chen. GCreep: Google engineer stalked teens,

spied on chats. Gawker, September 2010.

http://gawker.com/5637234/.

[5]. A. Chlipala. Static checking of dynamically-varying

security policies in database-backed applications. In

Proceedings of the 9th Symposium on Operating

Systems Design and Implementation, Vancouver,

Canada, October 2010.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 135

[6]. S. S. M. Chow, J.-H. Lee, and L. Subramanian.

Two-party computation model for privacy-

preserving queries over distributed databases. In

Proceedings of the 16th Network and Distributed

System Security Symposium, February 2009.

[7]. V. Ciriani, S. D. C. di Vimercati, S. Foresti, S.

Jajodia, S. Paraboschi, and P. Samarati. Keep a few:

Outsourcing data while maintaining confidentiality.

In Proceedings of the 14th European Symposium on

Research in Computer Security, September 2009.

[8]. M. Cooney. IBM touts encryption innovation; new

technology performs calculations on encrypted data

without decrypting it. Computer World, June 2009.

