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ABSTRACT 
 

Online applications are powerless against robbery of sensitive data since adversaries can abuse programming bugs 

to access private information, and in light of the fact that curious or malware administrators may catch and break 

information. CryptDB is a framework that gives practical or provable confidentiality even with these attacks for 

applications backed by SQL databases. It works by executing SQL queries over encoded information utilizing an 

accumulation of effective SQL-aware encryption models. CryptDB can likewise link encryption keys to client 

passwords, with the goal that an information item can be decoded just by utilizing the secret key of one of the clients 

with access to that information. Accordingly, a database administrator never accesses decrypted information, and 

regardless of the possibility that all servers are compromised, an enemy can't decrypt the information of any client 

who isn't signed in. An investigation of a trace of 126 million SQL queries from a generation MySQL server appears 

that CryptDB can support operations over encoded information for 99.5% of the 128,840 columns found in the trace. 

Our assessment appears that CryptDB has low overhead, decreasing throughput by 14.5% for phpBB, a web forum 

application, and by 26% for queries from TPCC, contrasted with unmodified MySQL. Fastening encryption keys to  

client passwords requires 11– 13 special pattern annotations to secure  more than 20 sensitive fields and 2– 7 lines 

of source code changes  for three multi-client web applications. 
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I. INTRODUCTION 

 

We present CryptDB, a practical framework that 

investigates a middle of configuration point to give 

confidentiality for applications that utilize database 

administration frameworks (DBMSes). CryptDB is the 

primary framework that can execute an extensive 

variety of SQL queries over encrypted information.  The 

key understanding that makes our approach functional is 

that most SQL queries utilize a little arrangement of all 

around characterized administrators, each of which we 

can support proficiently over encoded information.  

CryptDB tends to two dangers, as showed in Figure 1. 

The primary risk is an adversary who accesses the 

DBMS server and tries to learn private information by 

snooping on the server. This danger may emerge when 

an attacker abuses some vulnerability to specifically get 

to the  DB server, when the database is outsourced to an 

outside organization (e.g., an open "cloud"), or when the 

DBMS is  directed by an curious framework or database 

administrator (DBA) who won't not be trusted. CryptDB 

intends to prevent the enemy from learning private 

information for this situation.  The second danger is a 

adversary who gets complete control of the application 

and the DBMS servers. For this situation,  CryptDB 

ensures the confidentiality of the information having a 

place  just to clients logged-out of the application during 

an  attack, however can't give any certifications to 

signed in  clients. This paper concentrates principally on 

the answer for begin risk; our SOSP paper points of 

interest the extra mechanisms that address the second 

risk.  CryptDB requires no progressions to the internals 

of the DBMS server, and should work with most 

standard SQL DBMSes. Our execution utilizes a 

MySQL back-end.  Our practicals demonstrate that the 

overhead of CryptDB is modest: throughput decreases 

by 26% for queries from the standard TPC-C 

benchmark, and by 14.5% for a multiuser bulletin board 
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application (phpBB), 18 looked at to running them over 

MySQL without encryption.  We find that CryptDB 

accepts most queries watched by in practice: an 

examination of 126 million SQL queries from a MIT 

MySQL service demonstrated that CryptDB accepts 

operations over encrypted information for 99.5% of the 

128,840 sections found in the query trace. 

 

II. CryptDB’s THREAT MODEL 
 

We discuss CryptDB’s threat model and provide an 

overview of our approach. 

 

Threat at DBMS Server 

 

In this danger, CryptDB makes preparations for a 

curious DBA or other outside attacker with full access 

to the information put away in the DBMS server.  Our 

objective is confidentiality (information security), not 

trustworthiness or accessibility.  The attacker is thought 

to be passive: she needs to learn confidential 

information, yet does not change queries issued by the 

application, query comes about, or the information in 

the DBMS.  

 
Figure: Passive Attacks on DBMS Server 

This risk incorporates DBMS programming 

compromises, root access to DBMS machines, and even 

access to the RAM of physical machines. With the 

ascent in database solidification inside big business data 

centers, outsourcing of databases to open distributed 

cloud computing frameworks, and the utilization of 

outsider DBAs, this risk is progressively essential. 

Threat at Arbitrary level 

We now depict the second risk where the application 

server, intermediary proxy, and DBMS server 

frameworks might be compromised arbitrarily.  The 

approach in danger 1 is deficient in light of the fact that 

a adversary would now be able to access the keys used 

to encode the whole database.  The arrangement is to 

encrypt distinctive information items (e.g., information 

having a place to various clients) with various keys. To 

analyze the key that should be utilized for every data 

item, developers annotate the application’s database 

construction to express better grained privacy policies. 

A curious DBA still can't acquire private information by 

snooping on the DBMS server (danger 1), and likewise, 

a adversary who compromises the application server or 

the intermediary proxy would now be able to decode 

only information of right now signed in clients (which 

are put away in the intermediary proxy).  Information of 

right now inactive clients would be encoded with keys 

not available to the adversary, and would stay 

confidential.  In this setup, CryptDB gives solid 

assurances in the substance of arbitrary server-side 

compromises, including those that pick up root access to 

the application or the intermediary proxy. CryptDB 

reveals at most the information of as of now dynamic 

clients for the length of the compromise, regardless of 

the possibility that the intermediary proxy acts in a 

Byzantine form. By “length of a compromise ", we 

mean the interval from the begin of the compromise 

until the point when any trace of the compromised has 

been removed from the framework. For a read SQL 

infusion attack, the length of the compromised traverses 

the attacker's SQL queries. In the above illustration of a 

adversary changing the email address of a client in the 

database, we consider the framework compromised for 

whatever length of time that the attacker’s email address 

endures in the database. 

 

III. CryptDB OVERVIEW 
 

CryptDB gives privacy in the face of an attacker with 

full read access to the information put away in the 

DBMS server. CryptDB tends to these difficulties 

utilizing three key ideas: a) the first is to execute SQL 

queries over encrypted information. CryptDB 

implements this thought utilizing a SQL-aware 

encryption procedure,  which use the way that all SQL 

queries are comprised of an all around characterized set 

of primitive administrators, for example, balance checks,  

arrange correlations, aggregates (entireties), and joins. 

By adopting known encryption plans (for balance, 

increases, and request checks) and utilizing another 

security cryptographic technique for joins, CryptDB 

encodes every data item in a way that enables the 

DBMS to execute on the carried information. CryptDB 

is  proficient in light of the fact that it for the most part 

utilizes symmetric-key encryption, maintains a strategic 

distance from  completely homomorphism encryption, 

and keeps running on unmodified DBMS  programming 

(by utilizing client characterized functions).  b) The 

second strategy is adjustable query-based encryption. 

Some encryption plans release more data than others 
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about the information to the DBMS server, however are 

required to process certain queries. 

 

 
Figure 1: CryptDB’s Architecture 

 

To avoid from uncovering every possible encryption of 

information to the DBMS from the earlier, CryptDB 

carefully changes the SQL aware encryption technique 

for any given information item, depending on the 

queries saw at run-time. To actualize these adjustments 

proficiently, CryptDB utilizes onions of encryption. 

Onions are a novel approach to minimally store 

different cipher texts inside each other in the database 

and maintain a strategic distance from costly re-

encryptions. c) The third thought is to chain encryption 

keys to user passwords, so that every data thing in the 

database can be decrypted just through a chain of keys 

established in the keyword of one of the clients with 

access to that information. Accordingly, if the client 

isn't signed into the application, and if the adversary 

does not know the client’s secret key, the enemy can't 

decrypt the client's information, regardless of the 

possibility that the DBMS and the application server are 

completely compromised.  To develop a chain of keys 

that catches the application's information  security and 

sharing approach, CryptDB enables the developer to  

give policy annotations over the application's SQL 

schema,  determining which clients (or different 

principals, for example, groups) have  access to every 

data item. 

 

IV. SQL QUERIES OVER ENCRYPTED DATA 
 

CryptDB enables the DBMS server to execute SQL 

queries on encrypted data almost as if it were executing 

the same queries on plaintext data. Existing applications 

do not need to be changed.  The CryptDB proxy stores a 

private master key MK, the database technique, and the 

present encryption layer of each column. The DBMS 

server sees an anonymized model (in which table and 

column names are exchanged by misty identifiers), 

encoded client information, and some assistant tables 

utilized by CryptDB. CryptDB likewise outfits the 

server with certain user defined functions (UDFs) that 

empower the server to figure on cipher texts for specific 

operations.  Preparing a query in CryptDB includes four 

steps: 1. the application issues an query, which the 

intermediary proxy captures and rewrites: it anonymizes 

each table furthermore, column name, and, utilizing the 

master MK, encrypts every consistent in the query with 

an encryption technique most appropriate for the desired 

operation. 2. The intermediate proxy additionally 

replaces certain operations with UDFs.  3. The 

intermediary proxy checks if the DBMS server should 

be given keys to change encryption layers before 

executing the query, and provided that this is true, 

issues an UPDATE query at the DBMS server, which 

conjures a UDF to modify the encryption layer of the 

suitable columns (Section 3.2).  4. The intermediary 

proxy sends the encoded query to the server, which 

executes it.  5. The server restores the encoded query 

result, which the intermediary proxy decrypts and 

comes back to the application. 

 

A. SQL aware Encryption: We now depict the 

encryption techniques utilized as a part of CryptDB, 

counting various existing cryptosystems and another 

cryptographic primitive for joins. For every encryption 

technique, we clarify the security property that CryptDB 

requires from it, its functionality, and how it is executed.   

Irregular (RND). RND gives the most extreme security 

in CryptDB: indistinctness under a adaptive chosen 

plaintext attack (IND-CPA); the plan is probabilistic, 

implying that two rise to values are mapped to various 

cipher texts with overpowering probability. Then again, 

RND does not permit any calculation to be performed 

efficiently on the cipher text. An effective development 

of RND is to utilize a square figure like AES or 

Blowfish in CBC mode together with an arbitrary 

instatement vector. 

 

Homomorphic encryption (HOM): HOM is as secure a 

probabilistic encryption technique as RND, however 

permits the server to perform calculations on encrypted 

information with the last result decrypted at the 

intermediary proxy. Although completely 

homomorphism encryption is restrictively moderate, 

homomorphic encryption for particular operations is 

efficient. To help increments, we executed the Paillier 

cryptosystem. With Paillier, duplicating the encryptions 

of two values brings about an encryption of the 

aggregate of the values, that is, HOMK (x) · HOMK (y) 

= HOMK (x + y), where the multiplication is performed 

modulo some public key value. To register SUM totals, 

the intermediary proxy replaces SUM with calls to a 

UDF that performs Paillier increase on a column 
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encrypted with HOM. HOM can likewise be used to 

compute midpoints by having the DBMS server return 

the total and the tally independently, and to increase 

values (e.g., SET id = id + 1). HOM cipher texts are 

2048 bits in length.   

 

JOIN and OPE-JOIN (join): A different encryption 

technique is expected to permit balance join between 

two columns, on the grounds that we utilize distinctive 

column particular keys for DET to avoid connections 

between's columns. JOIN not just supports all the 

operations permitted by DET, yet in addition empower 

the server to decide repeating values between two 

unique columns.  OPE-JOIN empowers joins by arrange 

relations. We give another cryptographic plan for JOIN. 

Word Search (SEARCH): SEARCH is utilized to 

perform searches on encrypted content to help 

operations, for example, MySQL’s LIKE administrator. 

Search is about as secure as RND.  We executed the 

technique for Song et al. SEARCH as of now supports 

just full word search.  At the point when the client plays 

out a search, for example, SELECT * FROM messages 

WHERE msg LIKE "% alice %", the intermediary 

proxy gives the DBMS server a token, which is an 

encryption of alice. The server can't decrypt the token to 

make sense of the hidden word. Utilizing a client 

characterized work, the DBMS server checks if any of 

the word encryptions in any message coordinate the 

token. All that the server gains from a SEARCH query 

is regardless of whether the token coordinated a 

message or not, and just for the tokens asked for by the 

client. The server would take in the same data while 

restoring the result set to the clients, so the plan reveals 

the negligible measure of extra data expected to restore 

the outcome. 

 

B. Adjustable Query-based Encryption 

 

CryptDB's adjustable query-based encryption technique 

takes care of this issue by progressively adjusting the 

layer of encryption on the DBMS server. The thought is 

to encrypt each information item in at least one onion: 

that is, each value is dressed in layers of progressively 

stronger encryption, as appeared in Figures 2 and 3. 

Each layer of every onion empowers a certain class of 

computation, as clarified prior.  Different onions are 

required on the grounds that the calculations supported 

by various encryption plans are not generally strictly 

requested. Contingent upon the sort of the information, 

CryptDB may not keep up all onions for every column. 

For example, the Search onion does not make well for 

numbers, and they Include onion does not make sense 

well for strings.   

 
Figure 2: Onion encryption layers and the classes of 

computation they allow. Onion names stand for the 

operations they allow at some of their layers   

 

For each layer of every onion, the intermediary proxy 

utilizes the same key for encoding values in a similar 

column, and unique keys crosswise over tables, columns, 

onions, and onion layers.  Utilizing a similar key for all 

values in a column permits the intermediary proxy to 

perform operations on a column without having to 

process separate keys for each column that will be 

controlled.  Utilizing individual keys crosswise over 

columns keeps the server from adapting any extra 

relations. These keys are derived from the private 

master key MK. For instance, for table t, column c, 

onion o, and encryption layer l, the intermediary proxy 

utilizes the key   

 

         =      (table t, column c, onion o, layer l) 

 

Where PRP is a pseudorandom permutation (e.g., AES).  

Every onion begins with the most secure encryption 

technique as the best level (RND for onions Eq and Ord, 

HOM for onion Add, and SEARCH for onion Search). 

As the intermediary proxy gets SQL queries from the 

application, it decides regardless of whether layers of 

encryption should be evacuated. On the off chance that 

query requires predicate P on column c, the 

intermediary proxy initially sets up what onion layers 

are expected to figure P on c. On the off chance that the 

encryption of c isn't now at an onion layer that permits P,  

the intermediary proxy strips off the onion layers to 

permit P on c, by sending  the related onion key to the 

server. The intermediary proxy never decodes the 

information past the minimum secure non-plaintext  

encryption onion layer, which might be superseded by 

the  blueprint designer to be a more secure layer (e.g., 

one may determine that charge card data may even 

under the least favorable conditions be at DET,  also, 

never at OPE).  CryptDB analyzes onion layer 

decryption utilizing UDFs that keep running on the 
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DBMS server. For instance, in Figure 3, to  decrypt 

onion Ord of column 2 in Table 1 to layer OPE, the  

intermediary issues the accompanying query to the 

server, invoking  the   

 

DECRYPT_RND UDF:  UPDATE Table1 SET C2-Ord 

= DECRYPT_RND (K, C2-Ord, C2-IV,) 

 

Where K is the proper key computed from Equation (1).  

In the meantime, the intermediary proxy updates its own 

inward state to keep in mind that column C2-Ord in 

Table1 is currently at layer OPE in the DBMS. 

 

 
Figure 3. Examples of (a) how CryptDB transforms a 

table’s schema and encrypts a database 

 

V. EXPERIMENTAL EVALUATION 
 

We examine the functionality and security of CryptDB 

on five applications and one huge trace: phpBB (Web 

forum application), HotCRP (a meeting framework), 

grad apply (the MIT EECS graduate confirmation 

application), Open-EMR (an electronic healthcare 

records application putting away patient medical 

information), TPC-C (an industry-standard database 

benchmark), and a follow of SQL queries from a well 

known MySQL server at MIT, sql.  Mit.edu. This server 

is utilized fundamentally by Web applications running 

on scripts.mit.edu, a common Web application 

facilitating operated by MIT's Student Information 

Handling Board (SIPB). What's more, this SQL server 

is utilized by various applications that keep running on 

different machines what’s more, utilize sql.mit.edu just 

to store their information. Our query trace traverses 

around ten days, and incorporates roughly 126 million 

queries more than 1193 databases and 18,162 queries. 

Each database is probably going to be a different 

occasion of an application.  Every one of these 

applications and the huge SQL trace contain delicate 

data that should be secured. 

Functional evaluation: We find that CryptDB accepts 

most queries; the number of columns in the 

"requirements plaintext" column, which checks columns 

that can't be prepared in encrypted form by CryptDB, is 

little in respect to the quantity of columns encrypted. 

For OpenEMR, CryptDB does not accept queries on 

certain sensitive fields that perform string control (e.g., 

substring and lowercase transformations) or date control 

(e.g., acquiring the day, month, or year of an encoded 

date). Notwithstanding, if these capacities were 

precomputed with the outcomes included as 

independent columns (e.g., by encoding the three 

columns of a date independently), CryptDB would 

support these queries.  

 

Security evaluation: To determine the measure of data 

that would be uncovered to the adversary practically 

speaking, we look at the steady state onion levels of 

various columns. To evaluate the level of security, we 

characterize the MinEnc of a column to be the weakest 

onion encryption technique uncovered on any of the 

onions of a column when onions achieve a steady state 

(i.e., after the application creates all query types, many 

running the entire trace). We consider RND and HOM 

as the strongest plans, trailed via SEARCH, trailed by 

DET and JOIN, and completing with OPE, which is the 

weakest technique. For instance, if a column has onion 

Eq at RND, onion Ord at OPE, and onion Add at HOM, 

the MinEnc of this column is OPE.  The correct side of 

Figure 4 demonstrates the MinEnc onion level for our 

applications and query traces.  

 

 
Figure 4: Steady-state onion levels for database 

columns required by a range of applications and traces. 

 

VI. PERFORMANCE EVALUATION 
 

To assess the performance of CryptDB, we utilized a 

machine with two 2.4GHz Intel Xeon E5620 4-center 

processors and 12GB of RAM to run the MySQL 5.1.54 
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server, and a machine with eight 2.4GHz AMD Opteron 

8431 6-center processors furthermore, 64GB of RAM to 

run the CryptDB intermediary proxy and the customers.  

The two machines were associated over a mutual 

Gigabit Ethernet network. The higher-provisioned 

customer machine guarantees that the customers are not 

the bottleneck in any experimental trails.  All workloads 

fit in the server's RAM. We look at the performance of a 

TPC-C query blend when running on an unmodified 

MySQL server versus on a CryptDB intermediary proxy 

in front of the MySQL server. We prepared CryptDB on 

the query set so there are no onion alterations during the 

TPC-C tests.   

 
Figure 5: Throughput for TPC-C queries, for a varying 

number of cores on the underlying MySQL DBMS 

server. 

 
Figure 6: Throughput of different types of SQL queries 

from the TPCC query mix running under MySQL, 

CryptDB, and the strawman design. 

 

Figure 5 demonstrates the throughput of TPC-C queries 

as the quantity of centers on the server shifts from one 

to eight. In all cases, the server invests 100% of its CPU 

energy preparing queries. Both MySQL and CryptDB 

scale well at first, however begin to level off because of 

inside secure conflict in the MySQL server, as 

announced by SHOW STATUS  LIKE 'Table%'. The 

general throughput with CryptDB is 21– 26% lower 

than MySQL, contingent upon the correct number of 

centers.  To comprehend the wellsprings of CryptDB's 

overhead, we measure the server throughput for various 

types of SQL queries seen in TPC-C, on a similar server, 

however running with just a single center empowered.  

Figure 6 demonstrates the outcomes for MySQL, 

CryptDB, and a strawman  outline; the strawman plays 

out each query over information encrypted with  RND 

by decrypting the significant information utilizing a 

UDF, playing out the query over the plaintext, and re-

encoding the outcome (if refreshing  rows). 

 

VII.  CONCLUSION 
 

We exhibited CryptDB, a framework that gives a 

practical and solid level of confidentiality even with two 

significant dangers going up against database-supported 

applications: curious DBAs and arbitrary compromises 

of the application server and the DBMS. CryptDB 

meets its objectives utilizing three thoughts: running 

queries effectively finished encrypted information 

utilizing a novel SQL-mindful encryption system, 

powerfully modifying the encryption level utilizing 

onions of encryption to limit the data revealed to the 

untrusted DBMS server, also, chaining encryption keys 

to client passwords in a way that permits just approved 

clients to access scrambled information. 
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